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We used protein affinity fingerprints to discover structurally novel inhibitors of cyclooxygenase-1
(COX-1) by screening a selected number of compounds, thus providing an alternative to
extensive screening. From the affinity fingerprints of 19 known COX-1 inhibitors, a compu-
tational model for COX-1 inhibition was constructed and used to select candidate inhibitors
from our compound library to be tested in the COX-1 assay. Subsequent refinement of the
model by including affinity fingerprints of inactive compounds identified three molecules that
were more potent than ibuprofen, a commonly used COX-1 inhibitor. These compounds are
structurally distinct from those used to build the model and were discovered by testing only
62 library compounds. The discovery of these leads demonstrates the efficiency with which
affinity fingerprints can identify novel bioactive chemotypes from known drugs.

Introduction

Molecules known to have activity against a therapeu-
tic protein target are often the starting point for the
discovery of new active molecules. These lead molecules
can be commercially available drugs, compounds in
clinical trials, or preclinical development candidates.
Known drugs are logical starting points for developing
therapeutics that will be competitive with existing
therapies (i.e., “me too” drugs) or helpful in developing
second-generation drugs. Molecules in preclinical de-
velopment or clinical trials often fail for reasons other
than lack of potency against their biological target.1,2

Poor toxicity profiles, bioavailability, and pharmaco-
kinetics can stop drug development. These initial com-
pounds, however, can serve as starting structures for
backup candidates. The challenge is how to use the
information from known active molecules to identify a
new class of molecules that is active, structurally
distinct from the known active molecules, and without
the undesirable properties of the original leads.

Computer models that distinguish active from in-
active molecules have been used to identify promising
molecules that have not been evaluated. These new
molecules are evaluated in the laboratory to determine
whether they display activity and fulfill the criteria for
alternative leads as described above. One drawback of
these methods is that they are almost entirely based
on the chemical structure of molecules under considera-
tion.3-5 Atoms and bonds are represented in computer
memory and analyzed by algorithms to construct com-
putational models that are applied to the computer
representation of the structures of untested molecules.6
Methods based on topological similarity (i.e., patterns

of atoms and bonds) are effective at finding active
molecules that have the same chemotypes as the known
active molecules,7-9 while methods that consist of phar-
macophores or molecular shapes are better at identify-
ing structurally novel active molecules.10-12 Computa-
tional docking experiments can also be effective in
identifying active molecules with novel chemotypes if
the three-dimensional structure of the target protein is
known.5,13,14

An alternative approach that uses descriptors based
on biological measurements rather than descriptors
derived from chemical structure may offer certain
advantages in identifying alternative lead molecules.
This is the basis of target related affinity profiling
(TRAP).15 TRAP technology characterizes small mol-
ecules by their affinities to a panel of proteins. A
compound’s set of binding affinities to this panel, its
affinity fingerprint, is the descriptor used to construct
computational models for activity against a particular
therapeutic target.15-19

In this study, we constructed an affinity fingerprint
model for cyclooxygenase-1 (COX-1) inhibition using
known nonsteroidal antiinflammatory drugs (NSAIDs).
Our model was used to select compounds from our
chemical library for assay against COX-1. As the report
of a prospective study, this paper supplements previous
retrospective proof-of-concept computational studies for
TRAP.16-18 In addition, the use of affinity fingerprints
of known drugs as a starting point for compound
selection is novel.

Target Related Affinity Profiling

TRAP technology is based on the principles that most
drugs produce their biological effects by interacting with
proteins and that small molecules can be classified by
these interactions. By extensively surveying small-
molecule interactions with several hundred proteins, we
have identified a reference panel of proteins that col-
lectively simulate the significant interactions between
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small-molecule ligands and proteins.15,17 The binding of
each small molecule in our chemical library is measured
for each of the proteins in the reference panel, and the
vector of each compound’s binding affinities constitutes
its affinity fingerprint. The set of affinity fingerprints
collectively constitutes a database of molecular descrip-
tors used for drug lead discovery.

Affinity fingerprints are not constructed from chemi-
cal structure; thus, they are naturally suited for finding
novel chemical entities. Several earlier studies of chemi-
cal structures and affinity fingerprints have demon-
strated that the relationship between small structural
changes in a molecule and the resultant changes in
protein binding affinities can be unpredictable.17,20 This
is consistent with the experience of medicinal chemists
in lead optimization, who have found that small struc-
tural changes can produce drastic effects on potency
while more structurally significant changes may have
little effect on a molecule’s activity.21

Affinity fingerprints are routinely used at Telik, Inc.
for the identification of small-molecule leads in the
absence of any a priori activity data.17 For example, a
training set of ∼70 compounds exhibiting the greatest
diversity in their affinity fingerprints is chosen and
assayed against a new therapeutic target to identify a
lead compound. By means of a set of proprietary
algorithms, a computational model is constructed from
these assay results and the affinity fingerprints of active
and inactive compounds. A second set of ∼70 compounds
is chosen from our compound library on the basis of
their fit to the fingerprint-derived computational model.
The process is repeated iteratively, resulting in the
identification of compounds with an increasingly better
affinity to the target. Usually the model is constructed
to improve potency, although we have also had success
in applying models for target selectivity. Typically,
biologically active molecules with affinity for the target
in the low micromolar to nanomolar range emerge from
three rounds of biological screening, or about 200
bioassays total.17

In principle, affinity fingerprints can also be used for
the identification of novel chemical scaffolds exhibiting
activity against a therapeutic target for which known
drugs already exist. In this approach, the known bio-
active molecules are fingerprinted by assaying them
against the panel of TRAP proteins, and a computa-
tional model for bioactivity is constructed. The com-
pound library is then searched to identify compounds
that have fingerprints consistent with the computa-
tional model constructed from the fingerprints of the
known drugs. These compounds are then tested in the
assay of interest. Because the search is based on affinity
fingerprint similarity rather than structural similarity
to the known drugs, bioactive molecules are discovered
with novel chemical scaffolds. This is the approach that
we have used in this study, and it provides a novel,
alternative use of affinity fingerprints to identify drug
leads.

NSAIDs and Cyclooxygenases

NSAIDs inhibit cyclooxygenase (prostaglandin G/H
synthase, COX), a membrane-bound enzyme responsible
for the oxidation of arachidonic acid to prostaglandins
that was first identified in the early 1970s.22 The COX

enzyme, a 71 kDa hemo- and glycoprotein, is expressed
in two isoforms. COX-2 is believed to be the therapeutic
molecular target for NSAIDs because its expression is
induced in inflammation. COX-1, on the other hand, is
constitutively expressed, and its inhibition by NSAIDs
is believed to be responsible for their gastric and renal
toxicity.

There are several structural classes of NSAIDs: (1)
salicylic acid derivatives (e.g., aspirin), (2) p-aminophe-
nol derivatives (e.g., acetaminophen), (3) indole and
indene acetic acids (e.g., indomethacin), (4) heteroaryl-
acetic acids (e.g., diclofenac), (5) arylpropionic acids (e.g.,
ibuprofen), (6) anthranilic acids (e.g., mefenamic acid),
(7) enolic acids (e.g., piroxicam), and (8) alkanones (e.g.,
nabumetone).23 While most NSAIDs are reversible
competitive inhibitors of both cyclooxygenase isoforms,
aspirin irreversibly inhibits cyclooxygenase by acety-
lating a serine residue in the active site.24 Because of
aspirin’s different mechanism of action, it was not used
in this study.

Results and Discussion

Compounds were selected to test their COX-1 inhibi-
tion in two batches. The selection of the initial batch of
compounds was based on a model constructed from the
fingerprints of 19 NSAIDs (Table 1). The 16 compounds
selected by using this method were inactive (<50%
inhibition at a compound concentration of 200 µM). The
second batch of compounds was chosen with a refined
computational model that incorporated the affinity
fingerprints of the inactive molecules from the first
batch of compounds. This refined model for COX-1
inhibition yielded an additional 46 compounds for assay.
Five of these compounds showed >50% inhibition at a
screening concentration of 200 µM. The concentration
response curves demonstrated that three of the five
active compounds had IC50 values in the range 1-100
µM. IC50 curves are shown in Figure 1. The IC50 value
determined for ibuprofen under these assay conditions
(10 µM arachidonic acid) was 76 µM, which is consistent
with IC50 values obtained by others at lower substrate
concentrations.25,26 Note that all three active molecules
identified have lower IC50 values than ibuprofen.

The chemical structures and IC50 values for the three
active molecules (1-3) are shown in Table 2. Each of
the molecules satisfies the general criteria associated
with a good drug lead: the molecular weight is relatively
low, the number of hydrogen bond donors and acceptors
is small, the number of rotatable bonds is limited, and
there are several regions on the molecule that could be
modified in a lead optimization effort. A search of the
literature revealed that none of these molecules have
been reported to have antiinflammatory activity, al-
though it is interesting to note that 3 was patented as
an intermediate to antiinflammatory phenoxyalkanoic
acids.27

The structurally most similar compounds from the 19
known NSAIDs that we used to build the model for
COX-1 inhibition are shown in Table 2. The active
molecules identified appear to be structurally distinct
from those used to build the model for bioactivity. Each
of the known NSAIDs in Table 2 has a carboxylate
group, while this is not present in any of the newly
identified active molecules. The diaryl ketone moiety in
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1 is interesting in that it is also present in the NSAID
ketoprofen. Ketoprofen is typically classified as a pro-
pionic acid derivative, but the activity of 1 suggests that
the acidic group is not required for activity. The related
drug flurbiprofen contains a carboxylic acid group, and
it has recently been shown that the drug and its ethyl
ester bind to COX-1 in nearly identical fashion, as
demonstrated by X-ray crystallography of their cocrys-
tals with the enzyme.28 Moreover, the diaryl ketone
group of 1 is seen in a number of ketoprofen analogues29

and has been reported in other compounds that are
classified under different chemotypes. For example,
chapter 6 in ref 30, which discusses sulfonamides with
antiinflammatory activity, includes several active mol-
ecules with a diaryl ketone moiety. Compound 1 sug-
gests that this group may be more important than the
chemotypes that are used to classify the antiinflamma-
tory agents in which it is present.

Affinity fingerprints of inactive compounds played a
critical role in the discovery of active molecules in this
study. The model constructed solely from the known
NSAIDs was unsuccessful for selecting active com-
pounds because all 16 compounds selected on the basis
of this model were inactive. When the affinity finger-
print model for COX-1 inhibition was refined by includ-
ing the fingerprints from these 16 inactive molecules,
an improved model resulted. A total of 5 of the 46
compounds selected by the refined model showed some
activity at high concentrations, and 3 were confirmed

to be more potent than ibuprofen. Clearly, the finger-
prints of inactive molecules were very important in
constructing an effective model for COX-1 inhibition.

The influence of the affinity fingerprints of inactive
molecules is best illustrated by the changes in the
scaling coefficients shown in Figure 2. As described in
Computational Methods, each element of a compound’s
affinity fingerprint is scaled by the correlation coefficient
of that coordinate with activity. The initial scaling
coefficients, which were determined from the affinity
fingerprints of the 19 NSAIDs, differ significantly from
the refined coefficients that were calculated using the
fingerprints of active and inactive compounds. Of the
four panel proteins whose NSAID binding affinities
were most strongly correlated with activity in the first
round of compound selections, none play a significant
role in the second round. In the refined model, affinities
to panel proteins 3, 12, and 2 are the most strongly
correlated with NSAID activity. A principal components
analysis of this model substantiated that these panel
proteins were influential in determining the spatial
relationships among the compounds. In particular, the
relationships among the actives and inactives in the
two-dimensional subspace defined by proteins 3 and 12,
the two most influential proteins, are shown in Figure
3.

Affinity fingerprints have been shown to be efficient
molecular descriptors for drug lead discovery.17 Perhaps
more importantly, these molecular descriptors are not

Table 1. Known Cyclooxygenase-1 Inhibitors Used To Build the Fingerprint Model for COX-1 Inhibition (Structural Classes in
Parentheses)
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directly related to structure. Active molecules can
therefore be identified that have novel chemotypes after
testing ∼60 compounds, as demonstrated in the current
study. Our procedure provides a distinct advantage over
methods that rely on chemical structure alone for
modeling bioactivity. These structural approaches may
be well suited for the identification of potent molecules
that are structurally related to those known to be active
but may be less useful in exploring regions of chemical
space that fall outside existing intellectual property
claims or are known to have pharmacological liabilities.

The fact that protein affinity fingerprints provide a
useful descriptor for constructing models for activity
against a therapeutic target is akin to the success of in
vitro “descriptors” in predicting a molecule’s absorption
and metabolism. In contrast to structural profiles,
biological profiles of a molecule, such as measurements
of CACO-2 cell transport or hepatocyte metabolism, are
more closely related to what one is trying to model (i.e.,

absorption or metabolism). Similarly, protein affinity
fingerprints are in vitro measurements of molecule-
protein interactions, so it is not surprising that they are
useful in predicting protein binding affinities.

Future directions for work with protein affinity
fingerprints include developing models for target selec-
tivity. Drugs have been approved that are selective for
COX-2 over COX-1, and these are claimed to show the
antiinflammatory behavior of traditional NSAIDs with-
out the typical side effect profile associated with COX-1
inhibition.31,32 Preliminary work with affinity finger-
prints on other targets has shown that selectivity can

Table 2. Chemical Structures for Active Compounds Identified by Affinity Fingerprints and the Structures of the Most Similar
NSAIDs As Measured by Tanimoto Distance (DT) Using ISIS Structural Keysa

a Tanimoto distance of <50% using ISIS structural keys.

Figure 1. Concentration response for the three most potent
hits identified. Concentration response for ibuprofen is shown
for comparison. Data are expressed as the mean ( SEM from
two to five determinations from at least two separate experi-
mental days.

Figure 2. Activity-biased scaling coefficients for the two
rounds of compound selections. The initial scaling coefficients
were calculated in the absence of any data for inactive
compounds. Inclusion of inactive data yields significantly
different values for the refined scaling coefficients. Proteins
3, 12, and 2 correlate most strongly with activity. A principal
components analysis of the activity data in the 12-dimensional
scaled space confirmed this and indicated that proteins 3 and
12 were the most influential in determination of the spatial
relationships among the compounds (see Figure 3).
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be built into affinity fingerprint models for bioactivity;
hence, COX-1/COX-2 selectivity is a logical next step
in this work.

Conclusions

Starting from the protein affinity fingerprints of 19
known NSAIDs, three structurally novel compounds
with good bioactivities toward COX-1 have been dis-
covered by assaying only 62 compounds. This demon-
strates a powerful new technique for using affinity
fingerprints of known drugs to find novel drug leads for
validated therapeutic targets or to find alternative
chemotypes for drug candidates that display undesirable
properties.

Experimental Section
Computational Methods. The computational models used

to select compounds for COX-1 inhibition were based on the
affinity fingerprints of 19 known COX-1 inhibitors (Table 1).
Several of the structural classes of NSAIDs are represented
by these compounds. The arylpropionic acid NSAIDs (e.g.,
ibuprofen) comprise the largest class in the set, but this is the
result of the NSAIDs that happen to be present in our
compound collection and not of any particular design for this
experiment. The molecular weight for the 19 NSAIDs ranges
from 206 to 416, with an average value of 293. To assess the
structural diversity among these compounds quantitatively,
we used the structural keys from the MDL’s ISIS/Base
software (version 2.4, MDL Information Systems, Inc., San
Leandro, CA). The structural keys are a set of 166 bits that
represent the presence or absence of structural elements in a
molecule.

Using these descriptors, we calculated the Tanimoto dis-
tance (1 minus the ratio of the number of bits in common
between the pair of molecules to the total number of bits set
in either molecule) between all pairs of NSAIDs. The average
Tanimoto distance was 0.65 (where 0 is most similar and 1 is
most different). For comparison to typical structural differ-
ences between biologically active molecules, we repeated the
distance calculation for compounds chosen from the Compre-
hensive Medicinal Chemistry database (version 2003.1, MDL
Information Systems, Inc., San Leandro, CA). These com-
pounds were chosen randomly with the constraint that the
molecular weight distribution approximates that of the NSAIDs.
The compounds had an average pairwise Tanimoto distance

of 0.69. The NSAIDs that were used to build the activity model
can therefore be considered structurally diverse.

To obtain their affinity fingerprints, the 19 NSAIDs were
assayed against a reference panel of proteins.15 Once an
affinity fingerprint for each of the NSAIDs has been measured,
it can be used to represent the NSAID as a point in 12-
dimensional space, one dimension for each panel protein
affinity. The compounds selected for assay against COX-1 in
this study were chosen from a 20 000 compound subset of
Telik’s corporate collection, a small-molecule screening library
that consists of internally synthesized compounds and com-
pounds purchased from chemical vendors. These molecules had
already been fingerprinted against the 12-member protein
panel. They therefore populate the 12-dimensional space with
20 000 affinity fingerprint points whose COX-1 activities have
not been determined. The TRAP algorithms select compounds
for testing on the basis of the spatial relationships among
active, inactive, and untested molecules in this 12-dimensional
space.

The goal of these algorithms was to find candidate molecules
(points) in this space that are structurally novel inhibitors of
COX-1. To do this requires a metric. We used the weighted
Euclidean distance, where the weight for each coordinate was
the correlation of that coordinate with NSAID activity. For
example, if all 19 NSAIDs had fingerprints that showed strong
binding with panel protein 1 and none of the others, there
would be a strong correlation between the value of the first
dimension in the 12 dimensions in the space and weak
correlation with the others. As a result, the weights of the 11
dimensions that did not correlate well would be reduced, and
their influence on compound selection would be minimized.
Further details are provided in ref 17.

Once the coordinates of all compounds (tested, as in the case
of the NSAIDs, or untested, as in the case of the small-
molecule screening library) had been rescaled, compounds were
selected for screening against COX-1. The selections were
made using two methods. The first method was an interpola-
tion procedure that produces a function that predicts activity
for all unscreened compounds based on their weighted Eu-
clidean distances from compounds whose activities have
already been measured. Each untested compound is assigned
a predicted activity based on the value of the function at the
location of that compound in the 12-dimensional space.
Compounds with the highest predicted activities are submitted
for assay. In the case of the activities of NSAIDs, it is difficult
to compare activity values from different citations, so we
assigned each an arbitrary activity of 1.0. In addition, because
interpolation requires inactive data, we added a “null finger-
print” to the origin of the space and assigned it an activity of
0. In addition to the compound selections based on high
predicted activity from the interpolation function, we selected
compounds that were nearest neighbors to the known actives
in the affinity fingerprint space.

The compound selections were carried out in two rounds.
In the first, 16 new compounds were selected from our library
by the methods described above. None of the compounds
selected had significant activity in the initial screening assays.
In the second round, the null fingerprint was discarded, and
the fingerprints of the actual inactive molecules were used
instead. The space was rescaled (the correlations between
coordinates and activity change because of the presence of the
inactive fingerprints), the interpolation function was recalcu-
lated, and an additional 46 library compounds were selected
for screening. As described in the results section, five of these
compounds showed activity.

In Vitro Assay. The colorimetric COX (ovine) inhibitor
screening assay kit was purchased from Cayman Chemical
(Ann Arbor, MI). The assay kit included the following compo-
nents: 10X assay buffer (1 M Tris-HCl, pH 8), 500 µM heme,
11 unit/µL COX-1 (ovine), 22 mM arachidonic acid, 0.1 M KOH,
and a solution of colorimetric substrate N,N,N′,N′-tetramethyl-
p-phenylenediamine (TMPD). To make a working stock of
arachidonic acid, the 22 mM solution provided was first diluted
1:1 with 0.1 M KOH in deionized distilled H2O to 2 mL,

Figure 3. Spatial relationships among the 19 NSAIDs, the
16 inactive compounds identified in the first round of com-
pound selections, and the 3 active molecules identified in the
second round of compound selections, in the two dimensions
most important in selecting the compounds in the second round
(as determined by principal components analysis). The two
active molecules in the lower-right-hand corner were selected
by the interpolation model, while the active molecule in the
upper left was selected by the nearest-neighbor algorithm.
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followed by further dilution. Ibuprofen was obtained from
Assay Designs (Ann Arbor, MI), and pirprofen and phenylb-
utazone were provided by CIBA Geigy (now Novartis). Other
NSAIDs were purchased from Sigma (St. Louis, MO) and
Cayman Chemical (Ann Arbor, MI).

Enzyme assays were run in 220 µL volumes. The 1X assay
buffer, heme (1 µM final), and enzyme (0.17 unit/µL final) were
prepared according to the instructions provided in the kit, and
this mixture was preincubated with compound for 10 min at
room temperature. The reaction was initiated by the addition
of TMPD solution (at a saturating concentration), followed by
cold arachidonic acid to 10 µM. The assay mixture was placed
on a shaker, shaken for 10 s, and incubated at room temper-
ature for 5 min. The enzyme activity was measured as an
increase in absorbance at 590 nm on a Spectra Max 250 reader
(Molecular Devices, Sunnyvale, CA).

Except for ibuprofen, which was supplied in aqueous solu-
tion and diluted with deionized distilled H2O, all compounds
were dissolved in dimethyl sulfoxide (DMSO) to a final DMSO
concentration of 3% (the assay was insensitive to DMSO
concentration up to 4.5%). Compounds were assayed for COX-1
inhibitor activity at 200 µM in duplicate. Inhibition of enzyme
activity, measured by a change in units of optical density (OD),
was normalized to the maximum possible change in OD and
expressed as percent inhibition.

For compounds that produced >50% inhibition under these
conditions, a concentration response was measured to enable
IC50 determination. Percent inhibition was measured in 0.5
log intervals over the concentration range -log [M] ) 9.0-
3.5. An iterative, nonlinear curve-fitting routine (GraphPad
Prism) was used to generate IC50 curves that obeyed

where Y is the percent inhibition, IC50 is the concentration at
which the percent inhibition is 50% of its maximum value, X
is the log of the molar concentration, and Hill is the Hill slope.
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